Loss of caveolin-1 and adiponectin induces severe inflammatory lung injury following LPS challenge through excessive oxidative/nitrative stress.
نویسندگان
چکیده
Excessive reactive oxygen/nitrogen species have been associated with the onset, progression, and outcome of sepsis, both in preclinical and clinical studies. However, the signaling pathways regulating oxidative/nitrative stress in the pathogenesis of sepsis-induced acute lung injury and acute respiratory distress syndrome are not fully understood. Employing the novel mouse model with genetic deletions of both caveolin-1 (Cav1) and adiponectin (ADPN) [double knockout (DKO) mice], we have demonstrated the critical role of Cav1 and ADPN signaling cross talk in regulating oxidative/nitrative stress and resulting inflammatory lung injury following LPS challenge. In contrast to the inhibited inflammatory lung injury in Cav1(-/-) mice, we observed severe lung inflammation and markedly increased lung vascular permeability in DKO mice in response to LPS challenge. Accordingly, the DKO mice exhibited an 80% mortality rate following a sublethal dose of LPS challenge. At basal state, loss of Cav1 and ADPN resulted in a drastic increase of oxidative stress and resultant nitrative stress in DKO lungs. Scavenging of superoxide by pretreating the DKO mice with MnTMPYP (a superoxide dismutase mimetic) restored the inflammatory responses to LPS challenge including reduced lung myeloperoxidase activity and vascular permeability. Thus oxidative/nitrative stress collectively modulated by Cav1 and ADPN signalings is a critical determinant of inflammatory lung injury in response to LPS challenge.
منابع مشابه
Adiponectin protects against paraquat-induced lung injury by attenuating oxidative/nitrative stress
The specific mechanisms underlying paraquat (PQ)-induced lung injury remain unknown, which limits understanding of its cytotoxic potential. Although oxidative stress has been established as an important mechanism underlying PQ toxicity, multiple antioxidants have proven ineffective in attenuating the deleterious effects of PQ. Adiponectin, which shows anti-oxidative and antinitrative effects, m...
متن کاملp-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress
Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a thera...
متن کاملDimethylarginine dimethylaminohydrolase II overexpression attenuates LPS-mediated lung leak in acute lung injury.
Acute lung injury (ALI) is a severe hypoxemic respiratory insufficiency associated with lung leak, diffuse alveolar damage, inflammation, and loss of lung function. Decreased dimethylaminohydrolase (DDAH) activity and increases in asymmetric dimethylarginine (ADMA), together with exaggerated oxidative/nitrative stress, contributes to the development of ALI in mice exposed to LPS. Whether restor...
متن کاملCaveolin-1 Tyr Phosphorylation Induces Interaction with TLR4 in Endothelial Cells and Mediates MyD88-Dependent Signaling and Sepsis-Induced Lung Inflammation
Activation of TLR4 by the endotoxin LPS is a critical event in the pathogenesis of Gram-negative sepsis. Caveolin-1, the signaling protein associated with caveolae, is implicated in regulating the lung inflammatory response to LPS; however, the mechanism is not understood. In this study, we investigated the role of caveolin-1 in regulating TLR4 signaling in endothelial cells. We observed that L...
متن کاملDoes p-coumaric acid improve cardiac injury following LPS-induced lung inflammation through miRNA-146a activity?
Objective: In cardiovascular diseases, inflammatory response plays an important role and affects heart function. As a flavonoid compound, p-coumaric acid (pCA), commonly exists in many fruits and vegetables and has a therapeutic effect on inflammatory diseases due to its anti-inflammatory properties. The purpose of the present study was to investigate pCA anti-inflammatory effect and the miRNAs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 306 6 شماره
صفحات -
تاریخ انتشار 2014